KENDRIYA VIDYALAYA NER BAREILLY

Practice Pre- Board
 Class- X Session- 2020-21
 Subject- Mathematics

Time Allowed: 3 Hours
Maximum Marks: $\mathbf{8 0}$

General Instructions:

1. This question paper contains two parts A and $B .2$.

Both Part A and Part B have internal choices.

Part - A:

1. It consists three sections- I and II.
2. Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.
3. Section II has 4 questions on case study. Each case study has 5 case-based sub-parts. An examinee is to attempt any 4 out of 5 sub-parts.
Part - B:
4. Question No 21 to 26 are Very short answer Type questions of 2 mark each, 2.

Question No 27 to 33 are Short Answer Type questions of 3 marks each
3. Question No 34 to 36 are Long Answer Type questions of 5 marks each.
4. Internal choice is provided in 2 questions of 2 marks, 2 questions of 3 marks and 1 question of 5 marks.

Question No.	Part-A	Marks allocated
	Section-I Section I has 16 questions of 1 mark each. Internal choice is provided in 5 questions.	
1	Write down the decimal expansion of $\frac{16}{3125}$ without actual division.	1
2	If the line given by $3 x+2 k y=2$ and $2 x+5 y+1=0$ are parallel then find the value of k.	1

3.	For what value of k, the pair of linear equations $3 x+y=3$ and $6 x+k y=8$ does not have a solution.	1
4.	If 3 chairs and 1 table costs Rs. 1500 and 6 chairs and 1 table costs Rs.2400. Form linear equations to represent this situation.	1
5.	Which term of the A.P. $27,24,21, \ldots .$. is zero? OR If $18, a, b-3 a r e$ in A.P. then $a+b=$?	1
6.	For what values of k, the equation $9 x^{2}+6 k x+4=0$ has equal roots?	
7.	Find the roots of the equation $x^{2}+7 x+10=0$ OR For what value(s) of 'a' quadratic equation $30^{2}-6+1=0$ has no real roots?	1
8.	If $\mathrm{PQ}=28 \mathrm{~cm}$, then find the perimeter of $\Delta \mathrm{PLM}$	1
9.	If two tangents are inclined at 60° are drawn to a circle of radius 3 cm then find length of each tangent. OR $P Q$ is a tangent to a circle with centre O at point P. If $\triangle O P Q$ is an isosceles triangle, then find $\angle O Q P$.	1

16.	Find the probability of getting a doublet in a throw of a pair of dice. OR	1

	Find the probability of getting a black queen when a card is drawn at random from a well-shuffled pack of 52 cards.	
	Section-II Case study based questions are compulsory. Attempt any four sub parts of each question. Each subpart carries 1 mark	
17.	Case Study based-1 SUN ROOM The diagrams show the plans for a sun room. It will be built onto the wall of a house. The four walls of the sunroom are square clear glass panels. The roof is made using - Four clear glass panels, trapezium in shape, all the same size - One tinted glass panel, half a regular octagon in shape Not to scale Scale $1 \mathrm{~cm}=1 \mathrm{~m}$	

(a)	Refer to Top View Find the mid-point of the segment joining the points $J(6,17)$ and $I(9,16)$. (i) (33/2,15/2) (ii) $(3 / 2,1 / 2)$ (iii) $(15 / 2,33 / 2)$ (iv) $(1 / 2,3 / 2)$	1
(b)	Refer to Top View The distance of the point P from the y-axis is (i) 4 (ii) 15 (iii) 19 (iv) 25	1
(c)	Refer to Front View The distance between the points A and S is (i) 4 (ii) 8 (iii) 16 (iv) 20	1
(d)	Refer to Front View Find the co-ordinates of the point which divides the line segment joining the points A and B in the ratio 1:3 internally. (i) $(8.5,2.0)$ (ii) $(2.0,9.5)$ (iii) $(3.0,7.5)$ (iv) $(2.0,8.5)$	1
(e)	Refer to Front View If a point (x, y) is equidistant from the $Q(9,8)$ and $S(17,8)$,then (i) $x+y=13$ (ii) $x-13=0$ (iii) $y-13=0$ (iv) $x-y=13$	1

18.	Case Study Based- 2 SCALE FACTOR AND SIMILARITY SCALE FACTOR		
A scale drawing of an object is the same shape as the object but a different			
size.			
The scale of a drawing is a comparison of the length used on a drawing to the			
length it represents. The scale is written as a ratio.			
SIMILAR FIGURES			
The ratio of two corresponding sides in similar figures is called the scale			
factor. Length in image		\quad	Scale factor $=\frac{\text { Corresponding length in object }}{}$
:---			

Page 7 of

| (c) | If two similar triangles have a scale factor of $\mathrm{a}: \mathrm{b}$. Which statement regarding
 the two triangles is true?
 (i)The ratio of their perimeters is $3 \mathrm{a}: \mathrm{b}$
 (ii)Their altitudes have a ratio $\mathrm{a}: \mathrm{b}$
 (iii) Their medians have a ratio $: \mathrm{b}$ |
| :--- | :--- | :--- |
| (iv) Their angle bisectors have a ratio $\mathrm{a}^{2}: \mathrm{b}^{2}$ | |$\quad 1 \mathrm{l}$

	What is the length of EF, where EF is one of the horizontal edges of the block? (i) 24 m (ii) 3 m (iii) 6 m (iv) 10 m
19.	Case Study Based- 3 Applications of Parabolas-Highway Overpasses/Underpasses A highway underpass is parabolic in shape.

A parabola is the graph that results from $p(x)=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}$ Parabolas are symmetric about a vertical line known as the Axis of Symmetry. The Axis of Symmetry runs through the maximum or minimum point of the parabola which is called the

Page 8 of

(a)	If the highway overpass is represented by $x^{2}-2 x-8$. Then its zeroes are (i) $(2,-4)$ (ii) $(4,-2)$ (iii) $(-2,-2)$ (iv) (-4,-4)	The highway overpass is represented graphically. Zeroes of a polynomial can be expressed graphically. Number of zeroes of polynomial is equal to number of points where the graph of polynomial (i) Intersects x-axis (ii) Intersects y-axis (iii) Intersects y-axis or x-axis (iv)None of the above

(c)	Graph of a quadratic polynomial is a (i) straight line (ii) circle (iii)parabola (iv)ellipse	
(d)	The representation of Highway Underpass whose one zero is 6 and sum of the zeroes is 0, is (i) $x^{2}-6 x+2$ (ii) $x^{2}-36$ (iii) $x^{2}-6$ (iv) $x^{2}-3$	
(e)	The number of zeroes that polynomial $f(x)=(x-2)^{2}+4$ can have is: (i) 1 (ii) 2 (iii) 0 (iv) 3	

(a)	Estimate the mean time taken by a student to finish the race. (i) 54 (ii) 63 (iii) 43 (iv) 50	
(b)	What wiil be the upper limit of the modal class ? (i) 20 (ii) 40 (iii) 60 (iv) 80	
(c)	The construction of cummulative frequency table is useful in determining the (i)Mean (ii)Median (iii)Mode (iv)All of the above	
(d)	The sum of lower limits of median class and modal class is (i) 60 (ii) 100 (iii) 80 (iv) 140	
(e)	How many students finished the race within 1 minute? (i) 18 (ii) 37 (iii) 31 (iv) 8	
	Part -B All questions are compulsory. In case of internal choices, attempt any one.	
21.	3 bells ring at an interval of 4,7 and 14 minutes. All three bell rang at 6 am, when the three balls will the ring together next?	2

22.	Find the point on x-axis which is equidistant from the points (2,-2) and (-4,2) OR	2
	$P(-2,5)$ and $Q(3,2)$ are two points. Find the co-ordinates of the point R on $P Q$ such that $P R=2 Q R$	
23.	Find a quadratic polynomial whose zeroes are $5-3 \sqrt{ } 2$ and $5+3 \sqrt{ } 2$.	2
24.	Draw a line segment $A B$ of length 9 cm . With A and B as centres, draw circles of radius 5 cm and 3 cm respectively. Construct tangents to each circle from the centre of the other circle.	2
25.	If $\tan A=3 / 4$, find the value of $1 / \sin A+1 / \cos A$ OR If $\sqrt{ } 3 \sin \Theta-\cos \theta=0$ and $0^{\circ}<\theta<90^{\circ}$, find the value of Θ	2
26.	In the figure, quadrilateral $A B C D$ is circumscribing a circle with centre O and $A D \perp A B$. If radius of incircle is 10 cm , then the value of x is	2
$27 .$.	Prove that $2-\sqrt{ } 3$ is irrational, given that $\sqrt{ } 3$ is irrational.	3

Section V							
33.	The mode of the following data is 67. Find the missing frequency x. 3						
	Class	40-50	50-60	60-70	70-80	80-90	
	Frequency	5	x	15	12	7	
34.	The two palm trees are of equal heights and are standing opposite each other on either side of the river, which is 80 m wide. From a point O between them on the river the angles of elevation of the top of the trees are 60° and 30°, respectively. Find the height of the trees and the distances of the point O from the trees. OR The angles of depression of the top and bottom of a building 50 meters high as observed from the top of a tower are 30° and 60° respectively. Find the height of the tower, and also the horizontal distance between the building and the tower.						5
35.	Water is flowing through a cylindrical pipe of internal diameter 2cm, into a cylindrical tank of base radius 40 cm at the rate of $0.7 \mathrm{~m} / \mathrm{sec}$. By how much will the water rise in the tank in half an hour?						5
36.	A motorboat covers a distance of 16 km upstream and 24 km downstream in 6 hours. In the same time it covers a distance of 12 km upstream and 36 km downstream. Find the speed of the boat in still water and that of the stream.						5

