CLASS : XII

SUBJECT:-MATHEMATICS

Max Marks:-80
Time: - $\mathbf{3}$ hours

General instructions

(i) This question paper consists of two parts A and B. Each part is compulsory. Part A carries 24 marks and part B carries 56 marks.
(ii) Part A has objective type questions and part B has descriptive type questions.
(iii) There is no overall choice. However, an internal choice has been provided in both the parts A and B.

PART-A :

1. This part consists of two sections-I and II.
2. Section I comprises of 16 very short answer type questions.
3. Section II contains 2 case studies. Each case study comprises of 5 case based MCQs. An examinee is to attempt any 4 out of 5 MCQs.

PART- B :

1. This part consists of three sections- III, IV and V.
2. Section III contains 10 questions of 2 marks each.
3. Section IV contains 7 questions of 3 marks each.
4. Section V contains 3 questions of 5 marks each
5. Internal choice is provided in 3 questions of section- III, 2questions of section-IV and 3 questions of section -V. You have to attempt only one of the alternatives in all such questions.

PART A

SECTION-I

1. Let $A=\{1,2,3,4\}$. Let R be the equivalence relation on $A x A$ defined by $(a, b) R(c, d)$ iff $a+d=b+c$. Find the equivalence class $[(1,3)]$.
2. State the reason why the relation $R=\left\{(a, b): a<b^{3}\right\}$ on the set R of real
number is not reflexive.
3. Find the value of $\sin ^{-1}[\cos (43 \pi / 5)]$.

OR
Write the range of one branch of $\sin ^{-1} x$, other than the principal value branch.
4. Let R is a relation in the set $A=\{1,2,3\}$ given by $R=\{(1,2),(2,1)\}$, write the pair of element(s) to add so that relation become transitive.
OR
Check whether the function $f: R \rightarrow R$ given by $f(x)=\cos x$ is one -one or not.
5. Find the value of A^{2}, where A is a 2×2 matrix whose elements are given by $\mathrm{a}_{\mathrm{ij}}=\left\{\begin{array}{l}1 \text { if } i \neq j \\ 0 \text { if } i=j\end{array}\right.$
OR
Given that A is a square matrix of order $3 x 3$ and $|A|=-5$. Find $|\operatorname{adj} A|$.
6. If $\left[\begin{array}{cc}a+4 & 3 b \\ 8 & -6\end{array}\right]=\left[\begin{array}{cc}2 a+2 & b+2 \\ 8 & a-8 b\end{array}\right]$ then find the value of $a-3 b$.
7. If A and B are squre matrices of order 3 each, $|A|=2$ and $|B|=3$. Find the value of $|3 A B|$.
8. Find the sum of the order and the degree of differential equation $\frac{d^{2} y}{d x^{2}}+$ $\sqrt[3]{\frac{d y}{d x}}+(5+x)=0$.
9. Evaluate $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$

OR
Evaluate $\int_{e}^{e^{2}} \frac{d x}{x \log x}$
10. Write the vector equation of line through the point $(5,2,-7)$ and which is parallel to the vector $3 \hat{\imath}+4 \hat{\jmath}-11 \hat{k}$.
11. Find the intercept cut off by the plane $x-y+5 z=7$ on x and z axis.
12. Let $\bar{a}=2 \hat{\imath}-\hat{\jmath}+2 \hat{k}$ and $\bar{b}=-\hat{\imath}+\hat{\jmath}-\hat{k}$, find the unit vector in the direction of $\bar{a}+\bar{b}$.
13. Find the area bounded by $y=x^{2}$, the x axis and the lines $x=-1$ and $x=1$.
14. Find the direction cosines of the normal to yz plane?
15. Evaluate: $P(A \cup B)$; if $2 P(A)=P(B)=5 / 13$ and $P(A \mid B)=2 / 5$.
16. Let A and B be events with $P(A)=3 / 5, P(B)=3 / 10$ and $P(A \cap B)=1 / 5$. Are A and B are independent? Justify.

Section II

Both the Case Study based questions are compulsory. Attempt any 4 sub parts from each question. (Each question carries 1 mark).
17. An insurance company insure three type of vehicles i.e., type A, B and C. If it insured 12000 vehicles of type $A, 16000$ vehicles of type B and 20,000 vehicles of type C. Survey report says that the chances of their accident are $0.01,0.03$ and 0.04 respectively.
Based on the informations given above, write the answer of following:
(i) The probability of insured vehicle of type C is
(a) $5 / 12$
(b) $4 / 12$
(c) $7 / 12$
(d) $3 / 12$
(ii) Let E be the event that insured vehicle meets with an accident then $P\left(\frac{E}{A}\right)$ is
(a) 0.09
(b) 0.01
(c) 0.07
(d) 0.06
(iii) Let E be the event that insured vehicle meets with an accident then P (E) is
(a) $38 / 1200$
(b) $32 / 1200$
(c) $24 / 1200$
(d) $35 / 1200$
(iv) The probability of an accident that one of the insured vehicle meets with an accident and it is a type C vehicle
(a) $2 / 7$
(b) $3 / 7$
$\begin{array}{ll}\text { (c) } 5 / 7 & \text { (d) } 4 / 7\end{array}$
(v) One of the insured vehicles meets with an accident and it is not of type A and C.
(a) $12 / 35$
(b) $20 / 35$
(c) $1 / 35$
(d) $17 / 35$
18. In a park, an open tank is to be constructed using metal sheet with a square base and vertical sides so that it contains 500 cubic meter of water.
Using above informations answer the following:
(i) If the edge of square is x meter and height of tank is $y \mathrm{~m}$ then correct relation is
(a) $x^{2} y=500$
(b) $x y=500$
(c) $x^{2} y^{2}=500$
(d) $x^{2}+y=500$
(ii) Relation for surface area of tank in terms of x and y is
(a) $2 x^{2}+4 x y$
(b) $x^{2}+x y$
(c) $2 x^{2}+2 x y$
(d) $x^{2}+4 x y$
(iii) The surface area of tank is minimum when x is equal to
(a) 8 m
(b) 20 m
(c) 10 m
(d) 5 m
(iv) The minimum surface area of tank is
(a) 200 sq m
(b) 300 sq m
(c) 250 sq m
(d) 400 sq m
(v) If size of square base of tank become twice and height remains same, then the volume
of tank will increase by cubic meters i.e.,
(a) 500 cum (b) 1000 cu m
(c) 1500 cu m (d) 2000 cum

Part B
 Section III (Two marks questions)

19. Express $\tan ^{-1}\left(\frac{\cos x-\sin x}{\cos x+\sin x}\right), 0<x<\pi$.
20. If A is square matrix of order 3 such that $A^{2}=2 A$, then find the value of $|A|$. OR
If $A=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$, show that $A^{2}-5 A+7 I=0$. Hence find A^{-1}.
21. Consider $f: R_{+} \rightarrow[4, \propto)$ given that $f(x)=x^{2}+4$. Show that f is one-one and onto.
22. Find the value(s) of k so that the following function is continuous at $\mathrm{x}=\pi / 2$

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}
\frac{k \cos x}{\pi-2 x}, \text { if } x \neq \pi / 2 \\
2, \\
\text { if } x=\pi / 2
\end{array}\right.
$$

23. Find equation of tangent to the curve $\mathrm{y}=\cos \mathrm{x}$ at $\mathrm{x}=\frac{\pi}{3}$.
24. Evaluate $\int \frac{d x}{x^{2}(x+1)}$

OR
Find $\int \frac{d x}{e^{x}+e^{-x}}$.
25. Find the area of the region bounded by $y^{2}=8 x$ and the line $x=3$.
26. Solve the differential equation: $\frac{d y}{d x}=-4 x y^{2}$ given that $\mathrm{y}(0)=1$.
27. A black and a red dice are rolled together. Find the conditional probability of obtaining the sum 8 , given that the red dice resulted in a number less than 4.
OR
Given that E and F are events such that $\mathrm{P}(\mathrm{E})=0.8, \mathrm{P}(\mathrm{F})=0.7, \mathrm{P}(\mathrm{E} \cap \mathrm{F})=0.6$ Find $\mathrm{P}(\bar{E} \mid \bar{F})$.
28. Find the image of point $(1,0,0)$ on the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$.

Section IV (Three marks questions)

29. Differentiate $x^{\sin x}+(\sin x)^{\cos x}$ with respect to x. OR
If $x=a \sec t, y=b \tan t$ find $\frac{d^{2} y}{d x^{2}}$ at $t=\frac{\pi}{6}$.
30. Find the intervals in which the function f given by $f(x)=(x+1)^{3}(x-3)^{3}$ is strictly increasing or decreasing.
31. Evaluate $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$
32. Find the area of the region bounded by the curves $\mathrm{x}^{2}+\mathrm{y}^{2}=4, \mathrm{y}=\sqrt{3} x$ and x axis in the first quadrant.
OR
Find the area of the curve $9 x^{2}+y^{2}=36$ using integration.
33. Solve $\frac{d y}{d x}=\frac{y}{x}-\cot \frac{y}{x} \cdot \cos \frac{y}{x}$
34. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $2 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ and $\lambda \hat{\imath}+2 \hat{\jmath}+3 \hat{k}$ is equal to one. Find the value of λ.
35. Integrate the function $\frac{x+2}{\sqrt{x^{2}+2 x+3}}$

Section V(Five marks questions)

36. Use the product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equations $x-y+2 z=1,2 y-3 z=1$ and $3 x-2 y+4 z=2$

OR

If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right]$, find A^{-1} and hence solve the system of linear equations $x+2 y+z=4,-x+y+z=0$ and $x-3 y+z=2$.
37. Find the maximum and minimum values of $5 \mathrm{x}+2 \mathrm{y}$ subject to constraints $2 x+3 y \geq 6, x-3 y \leq 3,3 x+4 y \leq 24, x \geq 0$ and $y \geq 0$.
38. Find the equation of a line passing through the point $(2,1,3)$ and perpendicular to the line $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x}{-3}=\frac{y}{2}=\frac{z}{5}$.
OR
Find the equation of the plane passing through the point $(0,1,0)$ and $(3,4,1)$ and parallel to the line $\frac{x+3}{2}=\frac{y-3}{2}=\frac{z-2}{5}$.

